INTRODUCTION

The importance of hydration in marathon running has been documented since the late 1960s (20, 32, 46-48). Recent studies show a relationship between the levels of dehydration that develop during exercise and the rise in rectal temperature. The conclusion was that dehydration was the single greatest risk to the health of a marathon runner, due to the rise in body temperature leading to heat illness, including heatstroke. Most published recommendations to date continue to emphasize the detrimental consequences of dehydration that can occur in a marathon, while more recent reports also warn us of the morbid consequences of over-hydration. Both conditions are extreme and can be minimized or prevented. However, this has led to a controversy regarding the optimal fluid guidelines athletes should follow. Recently, new recommendations for fluid replacement for marathon runners have been published by medical and athletic societies (1, 3, 8). These new guidelines encourage runners to drink ad libitum between 400 – 800ml/hour as opposed to the previous “as much as possible” advice.

Big City Marathons

Resolution of this controversy becomes more critical when we evaluate the water replacement needs of the “Big City Marathoner”. With the introduction of the big city marathons in 1976, with the first New York City Marathon, substantial changes have occurred in both the record times in which conditioned athletes cover the distance and the record number of runners who enter a marathon just to go the distance, the unconditioned athlete. We have come from what was primarily an elite athletic event to what is now a physical challenge for many recreational runners or walkers. Although it is great to have so many people participating in the sport there are major concerns as to how well these individuals hydrate themselves before, during and after competing in a marathon.

The hydration status of marathon runners depends on the balance between their sweat loss and fluid replacement (19-21, 34-39). Staying properly hydrated is important for both safety and performance. Dehydration occurs when fluid losses are not adequately replaced, while hyponatremia occurs when individuals are over hydrated. Dehydration decreases blood volume, increases heart rate, and impedes heat loss, all of which cause marathon competitors to slow their pace or drop out of the race. How much should athletes drink during a marathon? A substantial body of evidence shows that marathon runners should aim to drink ad libitum between 400 – 800ml per hour (1, 3-6, 8-9). The American College of Sports Medicine (ACSM) and the International Marathon Medical Directors Association (IMMDA) are two organizations that have taken position
stands following these guidelines. “The goal of drinking during prolonged exercise is to prevent excessive dehydration (>2% body weight loss from water deficit) and excessive changes in electrolyte balance in order to avert compromised exercise performance” (3).

Hydration in the Conditioned vs non-Conditioned Athlete

A. Conditioned athletes

The conditioned athlete is typically aware of the specific water requirements which will enable him/her to perform at peak levels. Conditioned athletes manage adequate hydration in a marathon by ingesting about 200-800 ml per hour; the lower rates mainly due to the difficulty of ingesting fluids when running at high speeds (<6 minute per mile). Abdominal distress, nausea and vomiting have been reported in highly trained distance runners who have tried to match fluid intakes to sweat rates (20, 28). Conditioned athletes have a greater capacity to store more glycogen in the muscles, have higher body fluids >60% body mass, greater tolerance to compete at higher temperatures (>21°C) and spend significantly less time out on the marathon course than the unconditioned athlete. Meal consumption is critical to ensure full hydration on a daily bases. A conditioned athlete’s daily caloric intake may consist of 75% - 85% carbohydrates as opposed to 50%-60% for the unconditioned athlete. High carbohydrate intake has been shown to increase body fluids and replenish sodium concentration levels after prolonged exercise. This evidence proves that we do not need to drink as much as possible to perform at a world class level.

B. Unconditioned athletes

The unconditioned athlete is of greater concern in the new big city marathon. These athletes are not necessarily aware of their fluid requirements, and run the greatest risk of over hydration which would lead to hyponatremia, or under hydration. Unconditioned athletes, those who are at the back of the pack of a marathon (>5 hours), are moving at a much slower pace, have less chance of accumulating body heat, have low rates of fluid loss and have a much easier time in consuming high doses of fluids. They are often urged to “drink as much as possible” to prevent dehydration. Research shows that these athletes need to be advised “not to drink more than a maximum of 500ml per hour.” Higher rates of fluid intake can be fatal if sustained for 5 or more hours (4, 24). Greater care should be taken in determining fluid replacement rates for athlete competing in a marathon >3 hours. Unconditioned athletes have less ability to generate a high sweat loss based on their intensity level during a marathon (50% VO2 max). They also have less ability to store high levels of glycogen in their muscles and a lower tolerance to compete in high temperatures (14). Focusing on improving fitness level may be the answer to reducing the incidence of dehydration and/or over-hydration.

Fluid Guidelines and Why We Need Them
Water serves as the essential solvent for cellular biochemical reactions and facilitates the thermal equilibrium of cells (12). It comprises about 63% of the entire body mass and 80% - 84% of kidney, lung, and skeletal muscle tissue. We must consume water because the amount lost in metabolism exceeds the amount synthesized by our body. Without adequate fluid replacement during prolonged exercise, rectal temperature and heart rate will become more elevated compared with a well-hydrated condition. The balance between the loss and gain of fluids maintains the body water within relatively narrow limits (10). The daily water intake of 3.7 L for adult men and 2.7 L for adult women meets the needs of the vast majority of persons. However, strenuous physical exercise and heat stress can greatly increase daily water needs, and the individual variability between athletes can be substantial (11, 20-24).

The two major systems adversely affected by dehydration are the cardiovascular system and the thermoregulatory system, potentially reducing oxygen and fatty acid delivery and heat dissipation. In the past, the recommendation has been to replace 100% of fluid lost, or drink “a pint per pound”. More recent reports, however, suggest that replacing at least 150% - 200% of fluid lost may be needed to ensure complete rehydration. These high doses are calculated to compensate for urine production and allow the athlete to maintain nearly 100% of their pre-exercise weight. Studies have shown that complete repletion of fluid losses during exercise maintains more normal cardiovascular function and lower rectal temperatures than does a lesser level of fluid replacement during exercise. It is concluded that complete replacement of fluid losses during exercise is desirable.

Hyponatremia Hypothesis

As a result of exercise induced sweating, athletes can lose up to 3 L of fluid per hour (14). Fluid replacement is required to maintain hydration and allow the athlete to continue to perform. Inadequate fluid intake will adversely affect temperature regulation, cardiovascular function, and muscle metabolism. As far back as 1932, it was stated that voluntary water consumption replaced only 56% of sweat lost during exercise (29). Research on ad libitum fluid intake over the last 74 years have repeatedly verified that humans, when given free access to fluids, replace no more than 75% of net losses during physical activity (26-28, 31-33). Rehydration during exercise maintains sweating and [or] skin blood flow, thereby preserving the ability to dissipate heat, and reducing cardiovascular strain. Thirst is not an accurate index of our fluid requirements during exercise. If a marathoner drinks only in response to their thirst they will become sufficiently dehydrated during the event to impair performance and place their health at risk. Therefore, they are required to override their natural inclination and are encouraged to drink as much as possible. However fluid intake at rates that exceed that of sweating rate is predicted to be the primary cause of hyponatraemia. Symptoms begin to appear when serum sodium levels fall below 135 mmol/L and water begins to flow into the body cells (7, 40). Early symptoms of hyponatraemia include weight gain, puffiness and nausea, while more serious symptoms include vomiting, confusion, irritability and seizures. If hyponatraemia is left untreated, it can progress to serious brain and lung swelling, coma and death.
Variables Effecting Hydration

The three main factors governing fluid loss during exercise are body mass (bodyweight), running speed (metabolic rate), and ambient temperature. Actual field data from multiple endurance studies indicate that the maintenance of bodyweight during the event will actually lead to reductions in serum sodium concentrations from pre-race to post-race. Fluid replacement at or above 100% does not seem to offer any performance benefits (14).

A. Body Mass

The goal of drinking during exercise is to prevent excessive dehydration (>2% body weight loss from water deficit) and excessive changes in electrolyte balance. The amount and rate of fluid replacement depend upon the athlete sweating rate, exercise duration and frequency of opportunities to drink. The longer the duration of the exercise the greater an athlete risk for dehydration or over-hydration. Only at degrees of dehydration beyond 3% is cardiac output significantly diminished. Female athletes, who are small in body mass and run >4 hour marathon, are at greater risk for over-hydration (hyponatremia).

B. Metabolic Rate

Metabolic rate is one of the major factors that determine the rate of sweat loss and the necessary rate of fluid ingestion during a marathon. The rate of energy expenditure is a function of the athlete’s size and running speed. Conditioned athletes can lose between 1-1.5L per hour during a marathon. However for reasons mentioned earlier, this does not mean that this is the rate at which fluid must be replaced. Evidence indicates that the rate of fluid intake varies from 400-800ml per hour (1, 3, 4, 8). The metabolic rate of an unconditioned athlete is much lower (<10 METS/hour). Close inspection of a marathon field illustrates the variety of shapes, sizes and speeds that must be taken into consideration when formulating fluid intake guidelines.

C. Environmental Factors

Environmental temperature also plays a key role in dehydration between the conditioned athlete and the non-conditioned athlete. Studies have shown that, when the conditioned athletes are euhydrated before prolonged exercise, they are more likely to perform at a higher rectal temperature than the non-conditioned athlete. Dehydration of 2% body mass during exercise in a hot environment (31°C – 32°C) has been shown to impair endurance performance. However, when exercise is performed in a temperate environment (20°C – 21°C), dehydration of 2% of body mass appears to have a lesser or insignificant effect on performance (32).

Keeping the body properly hydrated with the right amount of fluids improves safety and performance in a marathon. By doing so, we maintain blood and cell fluid
volume for cardiovascular transport and sweating. Dehydration will cause the athlete to slow down or stop when the drop in body water causes a decrease in vascular volume (lower cardio output and decreased muscle cell function). To avoid dehydration and hyponatremia, we need to balance fluid intake with sweat losses. In both cases, we need to focus on how much water or sports drink we are consuming before, during and after our marathon.

CONCLUSIONS

To recommend a specific fluid and electrolyte replacement to a given group of athletes that have a wide variety of fitness levels (e.g. metabolic requirements, intensity, duration, training status) and exercise tasks (e.g. weather condition, clothing, heat acclimatization) is a daunting task. As mentioned by the IMMDA we are used to given rules and algorithms to guide us through different situations; however, athletes should not be confined to these rules in a dynamic setting. It is true; there are no shortcuts toward great achievements. Scientists and clinicians must resist handing out unrealistic “blanket advice” to individuals who are seeking simple answers (1). By providing guidelines and advice on how to appropriately assess one’s individual fluid replacement needs, we can eliminate future fluid balance problems resulting from one size fits all generalization.

Literature search strategy

I started my literature research in April after I had completed module 5, Fluid and fuel intake during competition and training. I chose number one of the special study topics due to the fact that the marathon is my event. I competed as an elite athlete in the 1988 Olympics and feel I have mastered fluid intake to maximize my own performance. I was very interested and excited in researching the science behind fluid intake guidelines not only to compare the results to what I have applied for myself as an athlete but more important what I recommend as a coach to my athletes.

REFERENCES


15. Murray, R., Bartolli, W., Stofan, J., Horn, M., Eddy, D. A comparison of gastric
empting characteristics of selected sports drinks. International Journal of Sports
Nutrition 1999, 9, 263-274

16. Nichols, E.P., Jonnalagadda, S.S., Rosenbloom, A.C., Trinkaus, M. Knowledge,
attitudes, and behaviors regarding hydration and fluid replacement of collegiate
athletes. International Journal of Sports Nutrition and exercise Metabolism 2005,
15, 515-527


18. Wemple, R.D., Monocco, T.S., mack, G.W. Influence of sodium replacement on
fluid ingestion following exercise-induced dehydration. International Journal of
Sports Nutrition 1997, 7, 104-116


25. Armstrong LE, and C.M. Maresh. Fluid replacement during exercise and
recovery from exercise. In Body Fluid Balance, E.R. Buskirk and S.M. Puhl
(Eds.), Boca Ration FL. CRC Press, 1996. pp. 259-281


28. Cheuvront SN, Haymes EM. Ad libitum fluid intakes and thermoregulatory

29. Veron, H.M., Warner, C.G. The influence of the humidity of the air on capacity for work at high temperatures. J. Hyg. 1932 32-431-463

30. USATF announces major changes in hydration guidelines, 4-19-2003


34. Maron M.B., Wagner A.J., Horvath S.M. Thermoregulatory responses during competitive marathon running. Institute of Environmental Stress, University of California, Santa Barbara, California 93106


